On 2-class field towers for quadratic number fields with 2-class group of type (2,2)

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On 2-class field towers of imaginary quadratic number fields

For a number field k, let k1 denote its Hilbert 2-class field, and put k2 = (k1)1. We will determine all imaginary quadratic number fields k such that G = Gal(k2/k) is abelian or metacyclic, and we will give G in terms of generators and relations.

متن کامل

On 2-class Field Towers of Some Imaginary Quadratic Number Fields

We construct an infinite family of imaginary quadratic number fields with 2-class groups of type (2, 2, 2) whose Hilbert 2-class fields are finite.

متن کامل

On Imaginary Quadratic Number Fields with 2-class Group of Rank 4 and Infinite 2-class Field Tower

Let k be an imaginary quadratic number field with Ck,2, the 2-Sylow subgroup of its ideal class group Ck, of rank 4. We show that k has infinite 2-class field tower for particular families of fields k, according to the 4-rank of Ck, the Kronecker symbols of the primes dividing the discriminant ∆k of k, and the number of negative prime discriminants dividing ∆k. In particular we show that if the...

متن کامل

Real Quadratic Fields with Abelian 2-class Field Tower

We determine all real quadratic number fields with 2-class field tower of length at most 1.

متن کامل

Quadratic Fields with Cyclic 2-class Groups

For any integer k ≥ 1, we show that there are infinitely many complex quadratic fields whose 2-class groups are cyclic of order 2. The proof combines the circle method with an algebraic criterion for a complex quadratic ideal class to be a square. In memory of David Hayes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 1998

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089500032353